Monash Researchers Use AI To Optimise Pollination For Food Production

By Alice Duthie
on 3 March 2023

Monash University researchers have developed a new artificial intelligence monitoring system that tracks bees’ movement to help improve pollination and, in turn, crop yield. The researchers created a database of 2000+ insect tracks at a strawberry farm in Victoria. The results have now been published in the International Journal of Computer Vision.

The AI recordings tracked the movements of insects, to monitor each insect’s flower visits. As a result, farmers and researchers could better understand the contributions of different species to pollination.

Example video tracking the path of different insects in a strawberry patch

But how is this information useful?

To optimise pollination, a pollinator must visit a flower a specific number of times. The quality of food can be reduced if there are too few or too many visits, or if there are visits by ineffective species of pollinators.

Research co-author, NativeBee+Tech Facility Lab Director Associate Professor Alan Dorin, from the Faculty of Information Technology, said traditional methods of insect monitoring on farms are time-consuming, labour-intensive and can produce inaccurate or unreliable data.

“The monitoring system developed through this study can generate same-day data of crop pollination levels and provide farmers the evidence they need to inform decision-making,” Associate Professor Dorin said. 

“Knowing the extent to which a crop has been pollinated allows growers to alter hive locations and numbers to boost pollination levels.

“Farmers might also open or close greenhouse sidewalls to encourage or discourage insect visits from particular directions. They may decide to add flowers to entice insects to explore crop regions that have not been pollinated adequately.

“These simple interventions can ensure a better rate of successful pollination, and a higher yield of market-quality fruit. We believe that this system will serve as a benchmark for future research inprecision pollination.”

The Monash researchers created customised monitoring software that could analyse a huge volume of data and reliably track individual insects flying through complex foliage.

The study’s lead researcher Dr Malika Ratnayake said a key challenge during the research was to identify the movement of individual insects within a video so that the same insect path is not accidentally counted multiple times.

“The advanced software developed for the system combines AI-based object-detection capabilities with separate foreground detection algorithms to identify the precise positions of insects and the flowers they visit in the recorded videos,” Dr Ratnayake said. 

“The software also includes features to make data processing more efficient and save on computer power.

“We have opted to keep this software open-source so it is accessible to anyone who wants to build similar monitoring systems or other applications to optimise and analyse different data points captured through videos.”

pollination bee

Looking to the future, the researchers are using the monitoring system to study the long-term impacts and results of precision pollination techniques, and how it changes the quality of food production and yield over several crop cycles. 

To further investigate this research area, the researchers will be collaborating and working with the Australian Blueberry Growers Association, Costa Group’s berries division, CSIRO, Western Sydney University and the University of New England. 

The team is also exploring links to European insects via collaborations with the University of Trento, Italy and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany.

Related News


More WLT News